Taste responsiveness of fungiform taste cells with action potentials.
نویسندگان
چکیده
It is known that a subset of taste cells generate action potentials in response to taste stimuli. However, responsiveness of these cells to particular tastants remains unknown. In the present study, by using a newly developed extracellular recording technique, we recorded action potentials from the basolateral membrane of single receptor cells in response to taste stimuli applied apically to taste buds isolated from mouse fungiform papillae. By this method, we examined taste-cell responses to stimuli representing the four basic taste qualities (NaCl, Na saccharin, HCl, and quinine-HCl). Of 72 cells responding to taste stimuli, 48 (67%) responded to one, 22 (30%) to two, and 2 (3%) to three of four taste stimuli. The entropy value presenting the breadth of responsiveness was 0.158 +/- 0.234 (mean +/- SD), which was close to that for the nerve fibers (0.183 +/- 0.262). In addition, the proportion of taste cells predominantly sensitive to each of the four taste stimuli, and the grouping of taste cells based on hierarchical cluster analysis, were comparable with those of chorda tympani (CT) fibers. The occurrence of each class of taste cells with different taste responsiveness to the four taste stimuli was not significantly different from that of CT fibers except for classes with broad taste responsiveness. These results suggest that information derived from taste cells generating action potentials may provide the major component of taste information that is transmitted to gustatory nerve fibers.
منابع مشابه
A proton current associated with sour taste: distribution and functional properties.
Sour taste is detected by taste receptor cells that respond to acids through yet poorly understood mechanisms. The cells that detect sour express the protein PKD2L1, which is not the sour receptor but nonetheless serves as a useful marker for sour cells. By use of mice in which the PKD2L1 promoter drives expression of yellow fluorescent protein, we previously reported that sour taste cells from...
متن کاملTaste fiber responses during reinnervation of fungiform papillae.
Crushing or transecting the chorda tympani nerve of the gerbil (Meriones unguiculatus) caused ipsilateral degeneration of taste buds in the fungiform papillae. In less than two weeks some taste fibers regenerated into the tongue and formed new taste buds and receptor cells. The recovery process was evaluated electrophysiologically in 53 gerbils by acute recording proximal to the nerve injury si...
متن کاملGap junctions among taste bud cells in mouse fungiform papillae.
Introduction Mouse taste buds in fungiform papillae consist of ∼50 cells (TBCs; unpublished data), but only a few of them have synaptic contacts with taste nerves (Kinnamon et al., 1993; Seta and Toyoshima, 1995). Neither chemical nor electrical synapses/gap junctions have been confirmed in mammalian taste buds, though a subpopulation of TBCs expressed a variety of neurotransmitter receptors (K...
متن کاملCell-type-dependent action potentials and voltage-gated currents in mouse fungiform taste buds.
Taste receptor cells fire action potentials in response to taste substances to trigger non-exocytotic neurotransmitter release in type II cells and exocytotic release in type III cells. We investigated possible differences between these action potentials fired by mouse taste receptor cells using in situ whole-cell recordings, and subsequently we identified their cell types immunologically with ...
متن کاملNeural networks distinguish between taste qualities based on receptor cell population responses.
Response features of taste receptor cell action potentials were examined using an artificial neural network to determine whether they contain information about taste quality. Using the loose patch technique to record from hamster taste buds in vivo we recorded population responses of single fungiform papillae to NaCl (100 mM), sucrose (200 mM) and the synthetic sweetener NC-00274-01 (NC-01) (20...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 96 6 شماره
صفحات -
تاریخ انتشار 2006